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Abstract 

This senior project presents a gradient-descent, finite-element-based procedure for the shape optimization of column to 

attain the maximum elastic buckling load subjected to the volumetric constraint. Linearized Euler-Bernoulli beam theory 

is adopted to form the equation governing the flexural buckling of the column and a finite element method with hermite 

element shape functions is implemented to determine the corresponding numerical solutions. The constant, linear, and 

quadratic element shape functions are employed to discretize the cross-sectional area of the column. The least eigenvalue 

and the corresponding eigenvector of the resulting eigen-system for any column shape are efficiently calculated using 

power method together with Rayleigh quotient. Standard differentiations are applied to obtain the information essential 

for the gradient descent method. A selected set of results is then reported to demonstrate the convergence and accuracy 

of numerical solutions. 
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1. Introduction 

1.1  Motivation and significance 

Despite optimization was invented for several years, it is still attractive for many scientists and analysts. optimization is 

the selection of the best element from some set of available choices. In the civil engineering problem, the solution of 

optimization can be the minimum or maximum value of the objective functions. In this paper, we aim to focus on 

applying optimization for the design column. Column shape optimization has various advantages over conventional 

column design. For example,column optimization reduces the cost of a project. The optimization problem can be divided 

into two methods depending on the solution. There are exact solutions and numerical solutions.Numerical solution 

provides the approximate answers of the optimization. But this method can be used in complex problems. Although, 

previous papers had solved this problem by the simple method like using Hencky bar-chain model. But the disadvantages 

of Hencky bar-chain model are (1) need to separate thousands of elements along the column to give the nearly exact 

solution and (2) to assume column as rigid columns. In this paper, we improve and develop to provide more simple and 

powerful method, fast convergence, high accuracy by using finite elements.         
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1.2  Background and review   

1.2.1 Exact solutions 

Keller [1] formulated the problem to determine the column shape with a maximum buckling load buy using isoperimetric 

inequality for a certain eigenvalue problem. The critical buckling load of the optimal-shaped column was larger by 61.2% 

compared to the column with a cylindrical shape section. Then, Tadjbakhsh and Keller [2] had solved the optimization 

problems by isoperimetric inequalities for eigenvalues of second-order ordinary differential equations with various 

boundary conditions. The result showed that the critical buckling load is largest for the case with the hinged-hinged 

condition. The results were also expressed as isoperimetric inequalities for eigenvalues of second-order ordinary 

differential equations with various boundary conditions 

1.2.2 Numerical solution 

Maalawi [3] focused on a buckling optimization of flexible columns. The research showed that the model which 

was not restricted to the cross-section can provide a higher critical buckling load compared to the literature. Krishna and 

Ram [4] used the discrete link-spring model with clamped or pinned at one end and spring-supported at the other end. 

The model is used to verify the results obtained by Tadjbakhsh and Keller [2]. The solutions obtained using a one-

parameter iterative loop. Wang et al. [5] applied the Hencky bar-chain model (HBM) for the buckling and vibration 

analyses of non-uniform beams resting on a partial variable elastic foundation. The study [5] proposed an approximate 

model for optimizing Bernoulli columns using a combination of HBM techniques and genetic algorithms. Wang et al. [6] 

pointed out that the approach proposed by Krishna and Ram [5] may not be applicable in practice since a small 

discretization may affect the accuracy of the calculated buckling load. Wang et al. [7] presented the method for 

optimization of column resisting buckling when both compressive concentrated and distributed axial load.  

1.3  Research objective 

The key objective of this senior project is to implement a gradient descent, finite element based solution procedure for 

optimizing the column shape to attain the maximum elastic buckling load subjected to a volumetric constraint.  

1.4  Scope of work 

The present study is carried out specifically for a perfectly straight column with a circular cross section and fixed-free end 

conditions. The shear and axial deformations are fully negligible and the elastic flexural buckling is considered as the only 

mode of failure of the column.   

1.5  Methodology and research procedure  

The methodology and research procedure employed in the present study can be briefly summarized below. First, using 

Euler-Bernoulli beam theory to formulate the governing equations. Next, using finite element procedure to transform 

the governing into a linear eigen-system. Then, power method with Rayleigh quotient to determine the least eigenvalue 

and corresponding eigenvector. After that, The optimal profile of the cross-sectional area is achieved via the gradient 

descent method. Last, the proposed numerical procedure is implemented within the framework of MATLAB and then 

verified with available benchmark solutions 

1.6  Anticipated outcome and contribution 

This proposed  is to use fast convergence, high accuracy method by adapting finite element method to find the optimal 

shape of the column.  

2. Problem Formulation 

2.1 Problem description 

. 



Consider a cantilever beam of length l subjected to a compression force P at the free end. The column is made of a 

homogeneous, isotropic, linearly elastic material of Young’s modulus E and the cross section is of a circular shape with 

the area A=A(x) where x is a selected coordinate along the axis of the column with x=0 and x=L denoting the clamped 

and free ends, respectively. Let Pcr denote the buckling load of this particular column (i.e., the least compression force 

P at the bifurcation equilibrium states). The problem statement, here, is to determine the maximum Pcr subjected to the 

following volumetric constraint: 

 

Fig 1. Cantilever column considered in the current research 

l
A(x)dx = V0

0
   (1) 

where V0
is a given volume of the constituting material. 

2.2 Governing equations  

At the onset of the flexural buckling (i.e., P = Pcr ), the shear force V, the bending moment M, the curvature κ, the 

rotation θ, and the deflection v at any cross section located at the coordinate x are related by 

dV dM dv
=0,   +P =Vcr

dx dx dx
  (2) 

2
EA

M=EIκ= κ
4π

  (3) 

dθ dv
κ= ,   θ=

dx dx
  (4) 

where 
2

I=A /4π denotes the moment of inertia of the circular cross section. Combining Eqs. (2)-(4) leads to the linear, 

homogeneous, fourth order, ordinary differential equation governing the deflection v = v(x) : 

2 2 2 2
d EA d v d v

+ P = 0cr2 2 24πdx dx dx

 
  
 

  (5) 

In addition to satisfying the governing equation (5), the deflection v = v(x) must also satisfy the following essential and 

natural boundary conditions at both ends as listed below 

dv
v(0)=0,    θ(0)= (0)=0

dx
  (6) 



2 2 2 2
EA d v d EA d v dv

M(L) = (L) = 0;   V(L) = (L)+ P (L) = 0cr2 24π dx 4π dxdx dx

 
  
 

 (7) 

Upon introducing the following normalizations x = x / l , v = v / l , A = A / A0 , 
2 2

P = 4πP l / EAcr 0 , the strong 

statement of the buckling problem is to Find the least normalized axial force P (or the normalized buckling load) such 

that there exists a nontrivial function 
4

v C  (i.e., v 0 ) satisfying 

2 2 2
d d v d v2

A + P = 0
2 2 2

dx dx dx

 
  
 

  (8) 

v(0) = 0,    v (0) = 0   (9) 

2
v (1) = 0;   (A v ) (1)+ Pv (1) = 0      (10) 

The solution. By applying the standard weighted residual technique together with the integration-by-part procedure, the 

above strong statement can be replaced by the following equivalent weak statement: Find the normalized buckling load 

P such that there exists a nontrivial function 
2

v H0  such that 

2 21 1d w d v dw dv2
A dx - P dx = 0

2 2 dx dx0 0dx dx
    (11) 

for any test function 
2

w H0  where 
2

H ={f : f(0) = 0 Ù f (0) = 0 Ù f  is square integrable}0
  .  

Now, the mathematical statement of the optimization problem described in the previous section is to Find the 

maximum value of the normalized buckling load P subjected to the following volumetric constraint   

1
A(x)dx = V0

0
   (12) 

where V = V / A l0 0 0 . 

3. Numerical implementation 

3.1. Discretization  

To determine the normalized buckling load P for any given function A(x) satisfying the constraint (12), a standard finite 

element technique is adopted together with the power method to determine the least eigenvalue. First, the column 

occupying the interval [0,1]  in the normalized space is partitioned into n finite elements such that [0,1]= Ωee=1,n
  where 

Ω =[x , x ]e ee-1 , x = 00  and x = 1n . The trial and test functions for any generic element Ωe  can be approximated by 

e e e T e
v (x ) = (N ) v ,  

e e e T e
w (x ) = (N ) w   (13) 

where 
e

x = x - xe-1denotes the local coordinate of the element Ωe ; 
e e e e e T

v ={v θ v θ }1 1 2 2 is a vector containing 

the normalized end displacements
e e

v , v1 2  and the end rotations
e e

θ , θ1 2 ; 
e

w is an arbitrary vector; and 
e

N = N(x )  is a 

vector containing the following standard hermite shape functions 



where e
h  denotes the length of the element Ωe . The normalized area A of any cross section of the element Ωe can also 

be approximated by  

me e e e e
A (x ) = φ (x )Ai ii=1

   (14) 

where m denotes the number of interpolation points within the element Ωe ; 
e e e

A , A , ..., Am1 2  are normalized area of the 

cross section at interpolation points; and 
e e e

φ , φ , ..., φm1 2   are standard interpolation functions defined over the element 

Ωe . Examples of 
e e e

φ , φ , ..., φm1 2  for m=1,2,3 are shown in Table 1.  

 

By substituting the approximation (13) and (15) over the finite element mesh e
e=1,n

Ω  into the weak form (11), it leads to 

a system of homogeneous, linear algebraic equations governing the approximate normalized buckling load P :  

(K - PM)U = 0   (15) 

where U denotes a vector containing all degrees of freedom of the discretized column at the onset of the buckling, and 

K, M are matrices defined by 

n m me e e e e e e e e e T e
K = k ,    k = k A A ,    k = φ φ C (C ) dxj jij i ij ie=1 j=1i=1 Ωe

     (16) 

n e e e e T e
M = m ,    m = B (B ) dx

e=1 Ωe
    (17) 

in which
e e eB =dN /dx  , 

e e eC =dB /dx , and the summations appearing in (16) and (17) imply the direct assembly of 

element contribution via the standard procedure. The explicit expression for me can be readily obtained, from the direct 

integration, as 

The explicit expression 
ek  can also be constructed and results are given in Table 2 for m=1, 2 and Table 3 for m=3. 

Upon the interpolation (14), the volumetric constraint (12) becomes 

T

0F A=V   (18) 

where A  is a vector storing all different 
e

jA ,e=1,2,...,n;j=1,2,...,m  and F is a vector defined by  

e

n
e e e e e e e e e

1 2 m

e=1 Ω

F= f ,    f = φ (x )dx ,    φ ={φ  φ  ... φ }   (19) 

where, again, the summation appearing in (19) is carried out via the direct assembly procedure. The explicit expressions 

of 
ef  and F for m=1,2,3 are given in Table 4. Now, the statement of the discretized problem is to maximize the buckling 

load P satisfying Eq. (15) and subjected to the volumetric constraint (18). 

3.2 Solution procedure  

To determine the buckling load P  of the Eigen-system (16) for any given data of the normalized area A , an iterative 

procedure based upon the standard power method together with Rayleigh quotient. To maximize the buckling load P  

under the volumetric constraint (20), a standard gradient descent method is implemented. First, the gradient of P  with 



respect to each entry of Ā must be obtained. From the volumetric constraint (20), the first entry of Ā can be expressed 
in terms of the remaining entries by  

p0 32
1 2 3 N

1 1 1 1

FV FF
A = - A + A +...+ A

F F F F

 
 
 

  (20) 

where N  is the number of entries in A ; iA  denotes the ith entry of the vector A ; and iF  denotes the ith entry of vector 

F . In this sense, all the entries iA  (i=2,3,...,N)  can be considered independent whereas the first entry 1A  is dependent 

on the others. By taking a partial derivative of (20) with respect to iA  (i=2,3,...,N) , it gives rise to 

1 i

i 1

A F
=- ,     i=2,3,...,N

A F




  (21) 

It is worth noting that the buckled shape U corresponding to the buckling load P  is unique only up to the scaling 

magnitude (i.e., if U is the buckled shape, then αU is always the buckled shape for any α≠0). As a result, one of its entries 

can be set, without loss, to a unity. By taking a partial derivative of the governing equation (15) with respect to 

iA  (i=2,3,...,N) , it leads to 

i i i

U P K
(K-PM) - MU=- U

A A A

  

  
  (22) 

The system (22) is sufficient for determining the gradients iU/ A   and iP/ A   for i=2,3,...,N once the normalized 

buckling load P  and the corresponding buckled shape U are obtained from the power method. The gradient iK/ A   

for i=2,3,...,N can be obtained explicitly as 

en

e=1i i

K k
=

A A

 

 
   (23) 

e ee m m
p qe e e

pq q p

p=1 q=1i i i

A Ak
= k A +A

A A A

  
     

   (24) 

The explicit expressions of iK/ A   for i=2,3,...,N and m=1,2,3 are given in Table 5 and 6. The iterative procedure for 

the gradient descent method.  

4. Numerical Results 

4.1 Verification 

Tadjbakhsh and Keller[2] solved the exact solution of optimal shape by using isoperimetric inequalities for eigenvalues 

of second-order ordinary differential equations for cantilever column.  
The value of the maximum buckling load and the area of element is reported in Table 1. From the results, we 

can conclude that the area at the fixed end is maximum value but the area at the free end is a minimum value. It can be 

seen that with sufficiently large n, the maximum buckling load P̄ is increased and buckling load ratio P̄/Puniform converging 

to the optimal solution of 4/3 for both modes of interpolation function as can see in Figure 1(a). Puniform =
𝜋2

4
  is the 

critical buckling load that associated with the state of neutral equilibrium. Using m=2 lead the buckling load faster 

convergent than m=1.  Figure 1(b) can be concluded that in case using small number of elements, using m=2 has 

significantly less %error than using m=1. On the other hand, using over 128 elements for case m=1 is very close to value 

of %error by case m=2.  



 

Table 1. Values of the maximum buckling load and the area at the fixed end A(0) and the free end A(1) for m=1,2 

n he 

m=1 m=2 

P̄ 
P̄ 

Puniform

 A(0) A(1) 
Time 

(sec) 
P̄ 

P̄ 

Puniform

 A(0) A(1) 
Time 

(sec) 

2 1/2 2.8578 1.1582 1.2136 0.7864 0.00635 3.2626 1.3223 1.3486 0.2844 0.02857 

4 1/4 3.0989 1.2559 1.2915 0.5596 0.01663 3.2818 1.3301 1.3416 0.1674 0.04734 

8 1/8 3.2143 1.3027 1.3199 0.3763 0.04843 3.2874 1.3323 1.3366 0.1041 0.11834 

16 1/16 3.2619 1.3220 1.3306 0.2457 0.36113 3.289 1.3330 1.3366 0.0694 0.76538 

32 1/32 3.2798 1.3293 1.3351 0.1581 2.61617 3.2895 1.3332 1.3376 0.0512 5.31556 

64 1/64 3.2862 1.3318 1.3378 0.1015 30.169 3.2896 1.3332 1.3385 0.044 67.7449 

128 1/128 3.2883 1.3327 1.3399 0.0664 746.192 3.2892 1.3331 1.3396 0.0673 946.572 

Figure 2(a) shows the development of the variation of cross-sectional areas in case using m=1. It can be 

concluded that using more 128 elements provides the value that are closely exact value. Figure 2(b) shows the 

development of the variation of cross-sectional areas in case using m=2. It can be concluded that using more 32 elements 

provides the value that are closely exact value. 

Running time for Matlab program as can be seen from Figure 3, It is concluded that running time of both 

cases are increases exponentially. In any number of elements, m=2 takes time longer than m=1. 

5. Conclusion and Remark 

This research presented a simple, fast convergence, and high accuracy for the optimization of column against buckling 

load. The key procedures are obtained by adapting finite element and gradient descent method. The presents solution is 

verified by exact result by Tadjbakhsh and Keller[2]. The results have been compared with available benchmarks from 

the work of Tadjbakhsh and Josephin [2]. this study confirms that the present method can faster convergence than the 

previous methods. In addition, the results show that the number of interpolation points (m) effect in convergent of the 

buckling load. That, two points of interpolation lead the convergent of buckling load under lower element than one point 

of interpolation. Moreover, this paper present that the optimal shape from this paper provide nearby and high accuracy 

exact solution from Tadjbakhsh and Keller[2]. In addition, running time of both cases are increases exponentially. 

 
               (a)           (b) 

Fig 1. (a) Buckling load ratio P̄/P uniform versus the number of elements and (b) Percent of error versus the number of 

elements 



 
(a)              (b) 

Fig 2. (a) Variation of cross-sectional compared with  exact solution area for m=1 and (b) for m=2 

 
Fig 3. Running time versus number of elements for m=1 and m=2 
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